Modified Differentials and Basic Cohomology for Riemannian Foliations

نویسندگان

  • GEORGES HABIB
  • KEN RICHARDSON
چکیده

We define a new version of the exterior derivative on the basic forms of a Riemannian foliation to obtain a new form of basic cohomology that satisfies Poincaré duality in the transversally orientable case. We use this twisted basic cohomology to show relationships between curvature, tautness, and vanishing of the basic Euler characteristic and basic signature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Lightlike foliations of semi-Riemannian manifolds1

Using screen distributions and lightlike transversal vector bundles we develop a theory of degenerate foliations of semiRiemannian manifolds. We build lightlike foliations of a semiRiemannian manifold by suspension of a group homomorphism φ : π1(B, x0) → Isom(T ). We compute the basic cohomology groups of the flow determined by a lightlike Killing vector field on a complete semi-Riemannian mani...

متن کامل

The Spectrum of Basic Dirac Operators

In this note, we discuss Riemannian foliations, which are smooth foliations that have a transverse geometric structure. We explain a known generalization of Dirac-type operators to transverse operators called “basic Dirac operators” on Riemannian foliations, which require the additional structure of what is called a bundle-like metric. We explain the result in [10] that the spectrum of such an ...

متن کامل

Riemann Poisson Manifolds and Kähler-riemann Foliations

1 Riemann Poisson manifolds were introduced by the author in [1] and studied in more details in [2]. Kähler-Riemann foliations form an interesting subset of the Riemannian foliations with remarkable properties ( see [3]). In this paper we will show that to give a regular Riemann Poisson structure on a manifold M is equivalent to to give a Kähler-Riemann foliation on M such that the leafwise sym...

متن کامل

Identification of Riemannian foliations on the tangent bundle via SODE structure

The geometry of a system of second order differential equations is the geometry of a semispray, which is a globally defined vector field on TM. The metrizability of a given semispray is of special importance. In this paper, the metric associated with the semispray S is applied in order to study some types of foliations on the tangent bundle which are compatible with SODE structure. Indeed, suff...

متن کامل

The Bic of a Conical Fibration

In the paper we introduce the notions of a singular fibration and a singular Seifert fibration. These notions are natural generalizations of the notion of a locally trivial fibration to the category of stratified pseudomanifolds. For singular foliations defined by such fibrations we prove a de Rham type theorem for the basic intersection cohomology introduced the authors in a recent paper. One ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010